Properties

Label 3.2e8_13e2.6t8.3c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$43264= 2^{8} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{4} - 8 x^{2} - 8 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 17 + 22\cdot 23 + 14\cdot 23^{2} + 16\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 5 + \left(11 a + 13\right)\cdot 23 + \left(19 a + 15\right)\cdot 23^{2} + \left(15 a + 7\right)\cdot 23^{3} + \left(8 a + 21\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 17 + \left(11 a + 6\right)\cdot 23 + \left(3 a + 20\right)\cdot 23^{2} + \left(7 a + 19\right)\cdot 23^{3} + \left(14 a + 22\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 + 3\cdot 23 + 18\cdot 23^{2} + 17\cdot 23^{3} + 8\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.