Properties

Label 3.2e8_11e3.4t5.3c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 11^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$340736= 2^{8} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{6} + 3 x^{4} + 11 x^{2} + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 52 a + 2 + \left(11 a + 2\right)\cdot 53 + \left(5 a + 22\right)\cdot 53^{2} + \left(28 a + 52\right)\cdot 53^{3} + \left(41 a + 36\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 47 a + 12 + \left(33 a + 35\right)\cdot 53 + \left(22 a + 24\right)\cdot 53^{2} + \left(38 a + 40\right)\cdot 53^{3} + \left(48 a + 27\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 + 46\cdot 53 + 26\cdot 53^{2} + 44\cdot 53^{3} + 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 51 + \left(41 a + 50\right)\cdot 53 + \left(47 a + 30\right)\cdot 53^{2} + 24 a\cdot 53^{3} + \left(11 a + 16\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 41 + \left(19 a + 17\right)\cdot 53 + \left(30 a + 28\right)\cdot 53^{2} + \left(14 a + 12\right)\cdot 53^{3} + \left(4 a + 25\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 + 6\cdot 53 + 26\cdot 53^{2} + 8\cdot 53^{3} + 51\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,6)$
$(2,5)(3,6)$
$(1,6,5)(2,4,3)$
$(1,2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,6,5)(2,4,3)$$0$
$6$$4$$(1,2,4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.