Properties

Label 3.2e8_11e2_47e2.6t8.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 11^{2} \cdot 47^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$68425984= 2^{8} \cdot 11^{2} \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 3 x^{2} - 2 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 283 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 90 + 201\cdot 283 + 210\cdot 283^{2} + 64\cdot 283^{3} + 258\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 147 + 107\cdot 283 + 153\cdot 283^{2} + 171\cdot 283^{3} + 222\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 151 + 145\cdot 283 + 191\cdot 283^{2} + 143\cdot 283^{3} + 80\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 180 + 111\cdot 283 + 10\cdot 283^{2} + 186\cdot 283^{3} + 4\cdot 283^{4} +O\left(283^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.