Properties

Label 3.2e8_11e2.6t8.9c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$30976= 2^{8} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} + 7 x^{4} + 15 x^{2} + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 32 a + 15 + \left(22 a + 40\right)\cdot 47 + \left(16 a + 41\right)\cdot 47^{2} + \left(15 a + 39\right)\cdot 47^{3} + \left(39 a + 38\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 5\cdot 47 + 28\cdot 47^{2} + 10\cdot 47^{3} + 37\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 30 + 31 a\cdot 47 + \left(31 a + 31\right)\cdot 47^{2} + \left(4 a + 34\right)\cdot 47^{3} + \left(18 a + 7\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 32 + \left(24 a + 6\right)\cdot 47 + \left(30 a + 5\right)\cdot 47^{2} + \left(31 a + 7\right)\cdot 47^{3} + \left(7 a + 8\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 34 + 41\cdot 47 + 18\cdot 47^{2} + 36\cdot 47^{3} + 9\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 30 a + 17 + \left(15 a + 46\right)\cdot 47 + \left(15 a + 15\right)\cdot 47^{2} + \left(42 a + 12\right)\cdot 47^{3} + \left(28 a + 39\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,5,6)(2,3,4)$
$(1,4)(3,6)$
$(1,5,4,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(2,5)(3,6)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$-1$
$8$$3$$(1,5,6)(2,3,4)$$0$
$6$$4$$(1,5,4,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.