Properties

Label 3.2e8_11e2.6t8.5c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$30976= 2^{8} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 4 x^{4} + 9 x^{2} - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 20 + \left(4 a + 30\right)\cdot 43 + \left(29 a + 26\right)\cdot 43^{2} + 9\cdot 43^{3} + \left(31 a + 28\right)\cdot 43^{4} + \left(33 a + 27\right)\cdot 43^{5} + \left(5 a + 7\right)\cdot 43^{6} + \left(3 a + 30\right)\cdot 43^{7} + 17 a\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 23 + 19\cdot 43 + 10\cdot 43^{2} + 11\cdot 43^{3} + 3\cdot 43^{4} + 42\cdot 43^{5} + 5\cdot 43^{6} + 18\cdot 43^{7} + 27\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 42 + \left(38 a + 12\right)\cdot 43 + \left(13 a + 8\right)\cdot 43^{2} + \left(42 a + 24\right)\cdot 43^{3} + \left(11 a + 15\right)\cdot 43^{4} + \left(9 a + 30\right)\cdot 43^{5} + \left(37 a + 22\right)\cdot 43^{6} + \left(39 a + 27\right)\cdot 43^{7} + \left(25 a + 14\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 23 + \left(38 a + 12\right)\cdot 43 + \left(13 a + 16\right)\cdot 43^{2} + \left(42 a + 33\right)\cdot 43^{3} + \left(11 a + 14\right)\cdot 43^{4} + \left(9 a + 15\right)\cdot 43^{5} + \left(37 a + 35\right)\cdot 43^{6} + \left(39 a + 12\right)\cdot 43^{7} + \left(25 a + 42\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 20 + 23\cdot 43 + 32\cdot 43^{2} + 31\cdot 43^{3} + 39\cdot 43^{4} + 37\cdot 43^{6} + 24\cdot 43^{7} + 15\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 1 + \left(4 a + 30\right)\cdot 43 + \left(29 a + 34\right)\cdot 43^{2} + 18\cdot 43^{3} + \left(31 a + 27\right)\cdot 43^{4} + \left(33 a + 12\right)\cdot 43^{5} + \left(5 a + 20\right)\cdot 43^{6} + \left(3 a + 15\right)\cdot 43^{7} + \left(17 a + 28\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,6,5)(2,4,3)$
$(1,6)(3,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,4)(2,5)$$-1$
$6$$2$$(1,3)(4,6)$$-1$
$8$$3$$(1,6,5)(2,4,3)$$0$
$6$$4$$(1,2,4,5)(3,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.