Properties

Label 3.2e8_11e2.6t8.3
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$30976= 2^{8} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{4} - 44 x + 22 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 8\cdot 47 + 15\cdot 47^{2} + 12\cdot 47^{3} + 22\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 24\cdot 47 + 41\cdot 47^{2} + 2\cdot 47^{3} + 43\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 5\cdot 47 + 18\cdot 47^{2} + 29\cdot 47^{3} + 40\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 8\cdot 47 + 19\cdot 47^{2} + 2\cdot 47^{3} + 35\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.