Properties

Label 3.2e8_11e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$30976= 2^{8} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{2} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 70\cdot 103 + 10\cdot 103^{3} + 6\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 97\cdot 103 + 56\cdot 103^{2} + 76\cdot 103^{3} + 92\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 60 + 98\cdot 103 + 102\cdot 103^{2} + 40\cdot 103^{3} + 61\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 69 + 42\cdot 103 + 45\cdot 103^{2} + 78\cdot 103^{3} + 45\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.