Properties

Label 3.2e8_11_17e2.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 11 \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$813824= 2^{8} \cdot 11 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{4} - 14 x^{2} - 68 x - 121 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 31 + 64\cdot 199 + 198\cdot 199^{2} + 61\cdot 199^{3} + 124\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 69 + 195\cdot 199 + 6\cdot 199^{2} + 142\cdot 199^{3} + 148\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 134 + 34\cdot 199 + 43\cdot 199^{2} + 109\cdot 199^{3} + 136\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 164 + 103\cdot 199 + 149\cdot 199^{2} + 84\cdot 199^{3} + 187\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.