Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 31 + 64\cdot 199 + 198\cdot 199^{2} + 61\cdot 199^{3} + 124\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 69 + 195\cdot 199 + 6\cdot 199^{2} + 142\cdot 199^{3} + 148\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 134 + 34\cdot 199 + 43\cdot 199^{2} + 109\cdot 199^{3} + 136\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 164 + 103\cdot 199 + 149\cdot 199^{2} + 84\cdot 199^{3} + 187\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $6$ |
$2$ |
$(1,2)$ |
$1$ |
| $8$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $6$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.