Properties

Label 3.2e7_5_17.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{7} \cdot 5 \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$10880= 2^{7} \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{6} + 2 x^{4} - 5 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 9 + \left(15 a + 7\right)\cdot 37 + \left(20 a + 27\right)\cdot 37^{2} + \left(a + 8\right)\cdot 37^{3} + \left(18 a + 10\right)\cdot 37^{4} + \left(24 a + 25\right)\cdot 37^{5} + \left(7 a + 14\right)\cdot 37^{6} + \left(21 a + 12\right)\cdot 37^{7} + \left(10 a + 17\right)\cdot 37^{8} + \left(20 a + 29\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 3 + \left(21 a + 15\right)\cdot 37 + \left(16 a + 19\right)\cdot 37^{2} + \left(35 a + 31\right)\cdot 37^{3} + \left(18 a + 6\right)\cdot 37^{4} + \left(12 a + 31\right)\cdot 37^{5} + \left(29 a + 20\right)\cdot 37^{6} + \left(15 a + 15\right)\cdot 37^{7} + \left(26 a + 1\right)\cdot 37^{8} + \left(16 a + 26\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 18 + 6\cdot 37 + 21\cdot 37^{2} + 13\cdot 37^{3} + 19\cdot 37^{4} + 35\cdot 37^{5} + 13\cdot 37^{6} + 6\cdot 37^{7} + 13\cdot 37^{8} + 22\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 28 + \left(21 a + 29\right)\cdot 37 + \left(16 a + 9\right)\cdot 37^{2} + \left(35 a + 28\right)\cdot 37^{3} + \left(18 a + 26\right)\cdot 37^{4} + \left(12 a + 11\right)\cdot 37^{5} + \left(29 a + 22\right)\cdot 37^{6} + \left(15 a + 24\right)\cdot 37^{7} + \left(26 a + 19\right)\cdot 37^{8} + \left(16 a + 7\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 34 + \left(15 a + 21\right)\cdot 37 + \left(20 a + 17\right)\cdot 37^{2} + \left(a + 5\right)\cdot 37^{3} + \left(18 a + 30\right)\cdot 37^{4} + \left(24 a + 5\right)\cdot 37^{5} + \left(7 a + 16\right)\cdot 37^{6} + \left(21 a + 21\right)\cdot 37^{7} + \left(10 a + 35\right)\cdot 37^{8} + \left(20 a + 10\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 19 + 30\cdot 37 + 15\cdot 37^{2} + 23\cdot 37^{3} + 17\cdot 37^{4} + 37^{5} + 23\cdot 37^{6} + 30\cdot 37^{7} + 23\cdot 37^{8} + 14\cdot 37^{9} +O\left(37^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(2,5)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(2,5)(3,6)$ $-1$
$6$ $2$ $(1,2)(4,5)$ $1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $-1$
$8$ $3$ $(1,3,2)(4,6,5)$ $0$
$6$ $4$ $(2,3,5,6)$ $1$
$6$ $4$ $(1,4)(2,3,5,6)$ $-1$
$8$ $6$ $(1,3,5,4,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.