Properties

Label 3.2e7_3e3.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{7} \cdot 3^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3456= 2^{7} \cdot 3^{3} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 12 x^{2} - 24 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.2e3_3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 28 + 19 a\cdot 29 + \left(26 a + 1\right)\cdot 29^{2} + 11\cdot 29^{3} + \left(21 a + 20\right)\cdot 29^{4} + \left(25 a + 18\right)\cdot 29^{5} + \left(11 a + 26\right)\cdot 29^{6} + \left(18 a + 17\right)\cdot 29^{7} + \left(21 a + 27\right)\cdot 29^{8} + \left(23 a + 23\right)\cdot 29^{9} + \left(11 a + 25\right)\cdot 29^{10} + \left(16 a + 22\right)\cdot 29^{11} + \left(13 a + 17\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 27 + \left(3 a + 16\right)\cdot 29 + \left(22 a + 4\right)\cdot 29^{2} + \left(2 a + 4\right)\cdot 29^{3} + \left(9 a + 22\right)\cdot 29^{4} + \left(3 a + 10\right)\cdot 29^{5} + \left(4 a + 20\right)\cdot 29^{6} + \left(10 a + 5\right)\cdot 29^{7} + \left(7 a + 1\right)\cdot 29^{8} + \left(a + 15\right)\cdot 29^{9} + \left(11 a + 16\right)\cdot 29^{10} + \left(3 a + 11\right)\cdot 29^{11} + \left(21 a + 21\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 7 + 3\cdot 29 + 17\cdot 29^{2} + 17\cdot 29^{3} + 12\cdot 29^{4} + 18\cdot 29^{5} + 4\cdot 29^{6} + 13\cdot 29^{7} + 16\cdot 29^{8} + 22\cdot 29^{9} + 21\cdot 29^{10} + 27\cdot 29^{11} + 7\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 1 + \left(9 a + 28\right)\cdot 29 + \left(2 a + 27\right)\cdot 29^{2} + \left(28 a + 17\right)\cdot 29^{3} + \left(7 a + 8\right)\cdot 29^{4} + \left(3 a + 10\right)\cdot 29^{5} + \left(17 a + 2\right)\cdot 29^{6} + \left(10 a + 11\right)\cdot 29^{7} + \left(7 a + 1\right)\cdot 29^{8} + \left(5 a + 5\right)\cdot 29^{9} + \left(17 a + 3\right)\cdot 29^{10} + \left(12 a + 6\right)\cdot 29^{11} + \left(15 a + 11\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 2 + \left(25 a + 12\right)\cdot 29 + \left(6 a + 24\right)\cdot 29^{2} + \left(26 a + 24\right)\cdot 29^{3} + \left(19 a + 6\right)\cdot 29^{4} + \left(25 a + 18\right)\cdot 29^{5} + \left(24 a + 8\right)\cdot 29^{6} + \left(18 a + 23\right)\cdot 29^{7} + \left(21 a + 27\right)\cdot 29^{8} + \left(27 a + 13\right)\cdot 29^{9} + \left(17 a + 12\right)\cdot 29^{10} + \left(25 a + 17\right)\cdot 29^{11} + \left(7 a + 7\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 22 + 25\cdot 29 + 11\cdot 29^{2} + 11\cdot 29^{3} + 16\cdot 29^{4} + 10\cdot 29^{5} + 24\cdot 29^{6} + 15\cdot 29^{7} + 12\cdot 29^{8} + 6\cdot 29^{9} + 7\cdot 29^{10} + 29^{11} + 21\cdot 29^{12} +O\left(29^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(1,2)(4,5)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,2,3)(4,5,6)$$0$
$6$$4$$(1,3,4,6)$$-1$
$6$$4$$(1,4)(2,3,5,6)$$1$
$8$$6$$(1,2,3,4,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.