Properties

Label 3.2e6_7e3_61e2.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 7^{3} \cdot 61^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$81683392= 2^{6} \cdot 7^{3} \cdot 61^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 7 x^{4} - 8 x^{3} + 23 x^{2} + 51 x + 43 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 24 + \left(50 a + 10\right)\cdot 53 + \left(3 a + 4\right)\cdot 53^{2} + \left(2 a + 41\right)\cdot 53^{3} + \left(2 a + 10\right)\cdot 53^{4} + \left(6 a + 23\right)\cdot 53^{5} + \left(10 a + 50\right)\cdot 53^{6} + \left(45 a + 16\right)\cdot 53^{7} + \left(45 a + 40\right)\cdot 53^{8} +O\left(53^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 17 + 4\cdot 53 + 52\cdot 53^{2} + 24\cdot 53^{3} + 7\cdot 53^{4} + 7\cdot 53^{5} + 39\cdot 53^{6} + 14\cdot 53^{7} + 26\cdot 53^{8} +O\left(53^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 51 a + 32 + \left(2 a + 49\right)\cdot 53 + \left(49 a + 22\right)\cdot 53^{2} + \left(50 a + 45\right)\cdot 53^{3} + \left(50 a + 16\right)\cdot 53^{4} + \left(46 a + 45\right)\cdot 53^{5} + \left(42 a + 31\right)\cdot 53^{6} + \left(7 a + 28\right)\cdot 53^{7} + \left(7 a + 19\right)\cdot 53^{8} +O\left(53^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 3 + 42\cdot 53 + 25\cdot 53^{2} + 13\cdot 53^{3} + 42\cdot 53^{4} + 13\cdot 53^{5} + 22\cdot 53^{6} + 26\cdot 53^{7} + 16\cdot 53^{8} +O\left(53^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 34 + \left(48 a + 11\right)\cdot 53 + \left(30 a + 42\right)\cdot 53^{2} + \left(20 a + 17\right)\cdot 53^{3} + \left(19 a + 12\right)\cdot 53^{4} + \left(52 a + 19\right)\cdot 53^{5} + \left(22 a + 14\right)\cdot 53^{6} + \left(38 a + 50\right)\cdot 53^{7} + \left(41 a + 16\right)\cdot 53^{8} +O\left(53^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 49 a + 50 + \left(4 a + 40\right)\cdot 53 + \left(22 a + 11\right)\cdot 53^{2} + \left(32 a + 16\right)\cdot 53^{3} + \left(33 a + 16\right)\cdot 53^{4} + 50\cdot 53^{5} + 30 a\cdot 53^{6} + \left(14 a + 22\right)\cdot 53^{7} + \left(11 a + 39\right)\cdot 53^{8} +O\left(53^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(2,4)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,4)(3,6)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(2,4)(3,6)$$-1$
$6$$2$$(1,2)(4,5)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,3,2)(4,5,6)$$0$
$6$$4$$(2,3,4,6)$$-1$
$6$$4$$(1,5)(2,3,4,6)$$1$
$8$$6$$(1,3,4,5,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.