Properties

Label 3.2e6_7e3_31e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 7^{3} \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$21095872= 2^{6} \cdot 7^{3} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} - 63 x^{4} + 1372 x^{2} - 10633 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 15 + 17\cdot 73 + 73^{2} + 66\cdot 73^{3} + 10\cdot 73^{4} + 11\cdot 73^{5} + 36\cdot 73^{6} + 13\cdot 73^{7} + 65\cdot 73^{8} + 60\cdot 73^{9} + 24\cdot 73^{10} + 29\cdot 73^{11} + 41\cdot 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 60 a + 40 + \left(42 a + 24\right)\cdot 73 + \left(55 a + 30\right)\cdot 73^{2} + \left(10 a + 35\right)\cdot 73^{3} + \left(61 a + 38\right)\cdot 73^{4} + \left(27 a + 35\right)\cdot 73^{5} + \left(5 a + 39\right)\cdot 73^{6} + \left(25 a + 5\right)\cdot 73^{7} + \left(12 a + 67\right)\cdot 73^{8} + \left(17 a + 51\right)\cdot 73^{9} + \left(45 a + 22\right)\cdot 73^{10} + \left(35 a + 61\right)\cdot 73^{11} + 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 60 a + 72 + \left(42 a + 52\right)\cdot 73 + \left(55 a + 64\right)\cdot 73^{2} + \left(10 a + 60\right)\cdot 73^{3} + \left(61 a + 7\right)\cdot 73^{4} + \left(27 a + 15\right)\cdot 73^{5} + \left(5 a + 45\right)\cdot 73^{6} + \left(25 a + 70\right)\cdot 73^{7} + \left(12 a + 66\right)\cdot 73^{8} + \left(17 a + 54\right)\cdot 73^{9} + \left(45 a + 4\right)\cdot 73^{10} + \left(35 a + 23\right)\cdot 73^{11} + 32\cdot 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 58 + 55\cdot 73 + 71\cdot 73^{2} + 6\cdot 73^{3} + 62\cdot 73^{4} + 61\cdot 73^{5} + 36\cdot 73^{6} + 59\cdot 73^{7} + 7\cdot 73^{8} + 12\cdot 73^{9} + 48\cdot 73^{10} + 43\cdot 73^{11} + 31\cdot 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 33 + \left(30 a + 48\right)\cdot 73 + \left(17 a + 42\right)\cdot 73^{2} + \left(62 a + 37\right)\cdot 73^{3} + \left(11 a + 34\right)\cdot 73^{4} + \left(45 a + 37\right)\cdot 73^{5} + \left(67 a + 33\right)\cdot 73^{6} + \left(47 a + 67\right)\cdot 73^{7} + \left(60 a + 5\right)\cdot 73^{8} + \left(55 a + 21\right)\cdot 73^{9} + \left(27 a + 50\right)\cdot 73^{10} + \left(37 a + 11\right)\cdot 73^{11} + \left(72 a + 71\right)\cdot 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 1 + \left(30 a + 20\right)\cdot 73 + \left(17 a + 8\right)\cdot 73^{2} + \left(62 a + 12\right)\cdot 73^{3} + \left(11 a + 65\right)\cdot 73^{4} + \left(45 a + 57\right)\cdot 73^{5} + \left(67 a + 27\right)\cdot 73^{6} + \left(47 a + 2\right)\cdot 73^{7} + \left(60 a + 6\right)\cdot 73^{8} + \left(55 a + 18\right)\cdot 73^{9} + \left(27 a + 68\right)\cdot 73^{10} + \left(37 a + 49\right)\cdot 73^{11} + \left(72 a + 40\right)\cdot 73^{12} +O\left(73^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(2,3)(5,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(1,4)$ $1$
$3$ $2$ $(1,4)(2,5)$ $-1$
$6$ $2$ $(2,3)(5,6)$ $1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $-1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,5,4,2)$ $1$
$6$ $4$ $(1,5,4,2)(3,6)$ $-1$
$8$ $6$ $(1,5,6,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.