Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 113 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 23 + 73\cdot 113 + 106\cdot 113^{2} + 14\cdot 113^{3} + 74\cdot 113^{4} +O\left(113^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 31 + 58\cdot 113 + 5\cdot 113^{2} + 18\cdot 113^{3} + 69\cdot 113^{4} +O\left(113^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 81 + 75\cdot 113 + 100\cdot 113^{2} + 17\cdot 113^{3} + 100\cdot 113^{4} +O\left(113^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 93 + 18\cdot 113 + 13\cdot 113^{2} + 62\cdot 113^{3} + 95\cdot 113^{4} +O\left(113^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $4$ | $3$ | $(1,2,3)$ | $0$ |
| $4$ | $3$ | $(1,3,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.