Properties

Label 3.2e6_7e2_23.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 7^{2} \cdot 23 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$72128= 2^{6} \cdot 7^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 2 x^{2} + 6 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 271 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 90 + 57\cdot 271 + 25\cdot 271^{2} + 7\cdot 271^{3} + 78\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 130 + 25\cdot 271 + 44\cdot 271^{2} + 199\cdot 271^{3} + 53\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 159 + 59\cdot 271 + 28\cdot 271^{2} + 140\cdot 271^{3} + 186\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 165 + 128\cdot 271 + 173\cdot 271^{2} + 195\cdot 271^{3} + 223\cdot 271^{4} +O\left(271^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.