Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 37 + 32\cdot 43 + 2\cdot 43^{2} + 18\cdot 43^{3} + 38\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 32 a + 33 + \left(41 a + 10\right)\cdot 43 + \left(11 a + 35\right)\cdot 43^{2} + \left(23 a + 27\right)\cdot 43^{3} + \left(36 a + 7\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 a + 22 + \left(a + 20\right)\cdot 43 + \left(31 a + 5\right)\cdot 43^{2} + \left(19 a + 39\right)\cdot 43^{3} + \left(6 a + 20\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 a + 31 + 41\cdot 43 + \left(24 a + 30\right)\cdot 43^{2} + \left(32 a + 17\right)\cdot 43^{3} + \left(36 a + 7\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 24 a + 7 + \left(42 a + 23\right)\cdot 43 + \left(18 a + 11\right)\cdot 43^{2} + \left(10 a + 26\right)\cdot 43^{3} + \left(6 a + 11\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $20$ | $3$ | $(1,2,3)$ | $0$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.