Properties

Label 3.2e6_7e2_13.6t6.1c1
Dimension 3
Group $A_4\times C_2$
Conductor $ 2^{6} \cdot 7^{2} \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$40768= 2^{6} \cdot 7^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - 8 x^{4} + 19 x^{2} - 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even
Determinant: 1.13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 8\cdot 29 + 2\cdot 29^{2} + 6\cdot 29^{3} + 28\cdot 29^{4} + 26\cdot 29^{5} + 15\cdot 29^{6} + 9\cdot 29^{7} + 6\cdot 29^{8} + 11\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 23 + \left(5 a + 7\right)\cdot 29 + \left(27 a + 7\right)\cdot 29^{2} + \left(26 a + 4\right)\cdot 29^{3} + \left(a + 23\right)\cdot 29^{4} + \left(5 a + 2\right)\cdot 29^{5} + \left(16 a + 20\right)\cdot 29^{6} + \left(4 a + 25\right)\cdot 29^{7} + \left(20 a + 9\right)\cdot 29^{8} + \left(25 a + 18\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 10 + \left(21 a + 1\right)\cdot 29 + \left(16 a + 27\right)\cdot 29^{2} + \left(19 a + 2\right)\cdot 29^{3} + \left(7 a + 5\right)\cdot 29^{4} + \left(27 a + 8\right)\cdot 29^{5} + \left(7 a + 8\right)\cdot 29^{6} + 3\cdot 29^{7} + \left(6 a + 14\right)\cdot 29^{8} + \left(a + 14\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 21 + 20\cdot 29 + 26\cdot 29^{2} + 22\cdot 29^{3} + 2\cdot 29^{5} + 13\cdot 29^{6} + 19\cdot 29^{7} + 22\cdot 29^{8} + 17\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 6 + \left(23 a + 21\right)\cdot 29 + \left(a + 21\right)\cdot 29^{2} + \left(2 a + 24\right)\cdot 29^{3} + \left(27 a + 5\right)\cdot 29^{4} + \left(23 a + 26\right)\cdot 29^{5} + \left(12 a + 8\right)\cdot 29^{6} + \left(24 a + 3\right)\cdot 29^{7} + \left(8 a + 19\right)\cdot 29^{8} + \left(3 a + 10\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 19 + \left(7 a + 27\right)\cdot 29 + \left(12 a + 1\right)\cdot 29^{2} + \left(9 a + 26\right)\cdot 29^{3} + \left(21 a + 23\right)\cdot 29^{4} + \left(a + 20\right)\cdot 29^{5} + \left(21 a + 20\right)\cdot 29^{6} + \left(28 a + 25\right)\cdot 29^{7} + \left(22 a + 14\right)\cdot 29^{8} + \left(27 a + 14\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(2,5)$
$(3,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(1,4)(3,6)$$-1$
$4$$3$$(1,2,3)(4,5,6)$$0$
$4$$3$$(1,3,2)(4,6,5)$$0$
$4$$6$$(1,2,3,4,5,6)$$0$
$4$$6$$(1,6,5,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.