Properties

Label 3.2e6_761e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 761^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$37063744= 2^{6} \cdot 761^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 6 x^{2} + 4 x + 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 43\cdot 139 + 60\cdot 139^{2} + 75\cdot 139^{3} + 136\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 + 58\cdot 139 + 21\cdot 139^{2} + 101\cdot 139^{3} + 53\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 74 + 138\cdot 139 + 20\cdot 139^{2} + 138\cdot 139^{3} + 36\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 135 + 37\cdot 139 + 36\cdot 139^{2} + 102\cdot 139^{3} + 50\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.