Properties

Label 3.2e6_751e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 751^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$36096064= 2^{6} \cdot 751^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 6 x^{2} + 10 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 25 + 36\cdot 71 + 65\cdot 71^{2} + 37\cdot 71^{3} + 30\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 + 42\cdot 71 + 25\cdot 71^{2} + 11\cdot 71^{3} + 45\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 34 + 8\cdot 71 + 17\cdot 71^{2} + 48\cdot 71^{3} + 39\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 + 54\cdot 71 + 33\cdot 71^{2} + 44\cdot 71^{3} + 26\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.