Properties

Label 3.2e6_751.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 751 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$48064= 2^{6} \cdot 751 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 6 x^{2} + 2 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.751.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 163 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 42\cdot 163 + 38\cdot 163^{2} + 113\cdot 163^{3} + 95\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 40\cdot 163 + 76\cdot 163^{2} + 74\cdot 163^{3} + 135\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 131 + 139\cdot 163 + 55\cdot 163^{2} + 138\cdot 163^{3} + 106\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 155 + 103\cdot 163 + 155\cdot 163^{2} + 162\cdot 163^{3} + 150\cdot 163^{4} +O\left(163^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.