Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 163 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 20 + 42\cdot 163 + 38\cdot 163^{2} + 113\cdot 163^{3} + 95\cdot 163^{4} +O\left(163^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 22 + 40\cdot 163 + 76\cdot 163^{2} + 74\cdot 163^{3} + 135\cdot 163^{4} +O\left(163^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 131 + 139\cdot 163 + 55\cdot 163^{2} + 138\cdot 163^{3} + 106\cdot 163^{4} +O\left(163^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 155 + 103\cdot 163 + 155\cdot 163^{2} + 162\cdot 163^{3} + 150\cdot 163^{4} +O\left(163^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $6$ |
$2$ |
$(1,2)$ |
$1$ |
| $8$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $6$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.