Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 33 + 149\cdot 311 + 184\cdot 311^{2} + 99\cdot 311^{3} + 178\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 65 + 289\cdot 311 + 34\cdot 311^{2} + 249\cdot 311^{3} + 149\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 254 + 194\cdot 311 + 258\cdot 311^{2} + 273\cdot 311^{3} + 227\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 274 + 288\cdot 311 + 213\cdot 311^{2} + 283\cdot 311^{3} + 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 307 + 10\cdot 311 + 241\cdot 311^{2} + 26\cdot 311^{3} + 64\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $20$ | $3$ | $(1,2,3)$ | $0$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.