Properties

Label 3.2e6_5e4.12t33.7c1
Dimension 3
Group $\PSL(2,5)$
Conductor $ 2^{6} \cdot 5^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\PSL(2,5)$
Conductor:$40000= 2^{6} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 5 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 9 + \left(21 a + 2\right)\cdot 23 + \left(8 a + 2\right)\cdot 23^{2} + \left(18 a + 20\right)\cdot 23^{3} + \left(5 a + 11\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 10 + \left(18 a + 10\right)\cdot 23 + \left(20 a + 17\right)\cdot 23^{2} + \left(21 a + 9\right)\cdot 23^{3} + \left(9 a + 5\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 3\cdot 23 + 5\cdot 23^{2} + 21\cdot 23^{3} + 18\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 15 + \left(a + 18\right)\cdot 23 + \left(14 a + 21\right)\cdot 23^{2} + \left(4 a + 1\right)\cdot 23^{3} + \left(17 a + 5\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 15 + \left(4 a + 10\right)\cdot 23 + \left(2 a + 17\right)\cdot 23^{2} + \left(a + 9\right)\cdot 23^{3} + \left(13 a + 3\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 + 5\cdot 23^{2} + 6\cdot 23^{3} + 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,6)$
$(1,6,3)(2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,6)(3,5)$$-1$
$20$$3$$(1,6,3)(2,5,4)$$0$
$12$$5$$(1,3,4,2,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,4,5,3,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.