Properties

Label 3.2e6_5e4.12t33.6c1
Dimension 3
Group $\PSL(2,5)$
Conductor $ 2^{6} \cdot 5^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\PSL(2,5)$
Conductor:$40000= 2^{6} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 5 x^{4} - 10 x - 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 2\cdot 11 + 7\cdot 11^{2} + 3\cdot 11^{3} + 5\cdot 11^{4} + 2\cdot 11^{5} + 9\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 3 + 10\cdot 11 + \left(a + 7\right)\cdot 11^{2} + \left(a + 5\right)\cdot 11^{3} + \left(3 a + 5\right)\cdot 11^{4} + 10\cdot 11^{5} + \left(5 a + 4\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 2 + 11 + 6\cdot 11^{2} + 2\cdot 11^{3} + 10\cdot 11^{4} + 3\cdot 11^{5} +O\left(11^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 6 + \left(a + 5\right)\cdot 11 + \left(10 a + 8\right)\cdot 11^{3} + \left(4 a + 3\right)\cdot 11^{4} + \left(4 a + 8\right)\cdot 11^{5} + \left(4 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 4 + \left(10 a + 8\right)\cdot 11 + 9 a\cdot 11^{2} + \left(9 a + 9\right)\cdot 11^{3} + \left(7 a + 5\right)\cdot 11^{4} + \left(10 a + 8\right)\cdot 11^{5} + \left(5 a + 2\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 8 + \left(9 a + 5\right)\cdot 11 + \left(10 a + 10\right)\cdot 11^{2} + 3\cdot 11^{3} + \left(6 a + 2\right)\cdot 11^{4} + \left(6 a + 10\right)\cdot 11^{5} + \left(6 a + 8\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,5)$
$(1,6,4)(2,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$15$$2$$(2,3)(4,5)$$-1$
$20$$3$$(1,6,4)(2,5,3)$$0$
$12$$5$$(1,4,2,5,6)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,2,6,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.