Properties

Label 3.2e6_5e4.12t33.5c1
Dimension 3
Group $\PSL(2,5)$
Conductor $ 2^{6} \cdot 5^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\PSL(2,5)$
Conductor:$40000= 2^{6} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{6} + 5 x^{4} + 15 x^{2} - 32 x - 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 49 a + 29 + \left(7 a + 24\right)\cdot 53 + \left(35 a + 2\right)\cdot 53^{2} + \left(22 a + 28\right)\cdot 53^{3} + \left(15 a + 2\right)\cdot 53^{4} + \left(47 a + 35\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 39 a + 37 + \left(12 a + 47\right)\cdot 53 + \left(22 a + 11\right)\cdot 53^{2} + \left(11 a + 32\right)\cdot 53^{3} + \left(52 a + 21\right)\cdot 53^{4} + \left(49 a + 29\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 21 + 37\cdot 53 + 47\cdot 53^{2} + 50\cdot 53^{3} + 49\cdot 53^{4} + 28\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 13 + \left(45 a + 7\right)\cdot 53 + \left(17 a + 29\right)\cdot 53^{2} + \left(30 a + 30\right)\cdot 53^{3} + \left(37 a + 41\right)\cdot 53^{4} + \left(5 a + 49\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 25 + 35\cdot 53 + 32\cdot 53^{2} + 14\cdot 53^{3} + 36\cdot 53^{4} + 50\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 34 + \left(40 a + 6\right)\cdot 53 + \left(30 a + 35\right)\cdot 53^{2} + \left(41 a + 2\right)\cdot 53^{3} + 7\cdot 53^{4} + \left(3 a + 18\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(4,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,5)(4,6)$$-1$
$20$$3$$(1,3,2)(4,5,6)$$0$
$12$$5$$(1,3,2,5,4)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,2,4,3,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.