Properties

Label 3.2e6_5e3_127e2.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 5^{3} \cdot 127^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$129032000= 2^{6} \cdot 5^{3} \cdot 127^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 11 x^{4} - 18 x^{3} + 22 x^{2} - 112 x + 96 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + \left(23 a + 25\right)\cdot 29 + \left(23 a + 5\right)\cdot 29^{2} + 16\cdot 29^{3} + \left(13 a + 17\right)\cdot 29^{4} + \left(a + 6\right)\cdot 29^{5} + \left(2 a + 25\right)\cdot 29^{6} + \left(12 a + 22\right)\cdot 29^{7} + \left(22 a + 10\right)\cdot 29^{8} + \left(8 a + 23\right)\cdot 29^{9} + \left(9 a + 18\right)\cdot 29^{10} +O\left(29^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 22 + \left(5 a + 10\right)\cdot 29 + \left(5 a + 14\right)\cdot 29^{2} + \left(28 a + 25\right)\cdot 29^{3} + \left(15 a + 23\right)\cdot 29^{4} + 27 a\cdot 29^{5} + \left(26 a + 5\right)\cdot 29^{6} + \left(16 a + 23\right)\cdot 29^{7} + \left(6 a + 23\right)\cdot 29^{8} + \left(20 a + 15\right)\cdot 29^{9} + \left(19 a + 27\right)\cdot 29^{10} +O\left(29^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 27 + \left(21 a + 9\right)\cdot 29 + \left(23 a + 15\right)\cdot 29^{2} + \left(14 a + 15\right)\cdot 29^{3} + \left(9 a + 17\right)\cdot 29^{4} + \left(27 a + 24\right)\cdot 29^{5} + \left(4 a + 5\right)\cdot 29^{6} + \left(17 a + 20\right)\cdot 29^{7} + \left(24 a + 26\right)\cdot 29^{8} + \left(18 a + 22\right)\cdot 29^{9} + \left(19 a + 13\right)\cdot 29^{10} +O\left(29^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 18 + 12\cdot 29 + 22\cdot 29^{2} + 14\cdot 29^{3} + 20\cdot 29^{4} + 12\cdot 29^{5} + 26\cdot 29^{6} + 17\cdot 29^{7} + 19\cdot 29^{8} + 23\cdot 29^{9} + 18\cdot 29^{10} +O\left(29^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 28 + 23\cdot 29 + 3\cdot 29^{2} + 7\cdot 29^{3} + 15\cdot 29^{4} + 6\cdot 29^{5} + 21\cdot 29^{6} + 17\cdot 29^{7} + 18\cdot 29^{8} + 24\cdot 29^{9} + 29^{10} +O\left(29^{ 11 }\right)$
$r_{ 6 }$ $=$ $ a + 22 + \left(7 a + 4\right)\cdot 29 + \left(5 a + 25\right)\cdot 29^{2} + \left(14 a + 7\right)\cdot 29^{3} + \left(19 a + 21\right)\cdot 29^{4} + \left(a + 6\right)\cdot 29^{5} + \left(24 a + 3\right)\cdot 29^{6} + \left(11 a + 14\right)\cdot 29^{7} + \left(4 a + 16\right)\cdot 29^{8} + \left(10 a + 5\right)\cdot 29^{9} + \left(9 a + 6\right)\cdot 29^{10} +O\left(29^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,6,5)$
$(1,4)(2,5)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,6)(4,5)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(3,6)(4,5)$$-1$
$6$$2$$(1,4)(2,5)$$-1$
$6$$2$$(1,4)(2,5)(3,6)$$1$
$8$$3$$(1,3,4)(2,6,5)$$0$
$6$$4$$(3,5,6,4)$$-1$
$6$$4$$(1,2)(3,5,6,4)$$1$
$8$$6$$(1,3,5,2,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.