Properties

Label 3.2e6_5e2_41e2.12t33.1
Dimension 3
Group $A_5$
Conductor $ 2^{6} \cdot 5^{2} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$2689600= 2^{6} \cdot 5^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 2 x^{3} - 22 x^{2} - 7 x - 33 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 521 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 449\cdot 521 + 265\cdot 521^{2} + 394\cdot 521^{3} + 354\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 66 + 273\cdot 521 + 76\cdot 521^{2} + 123\cdot 521^{3} + 480\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 284 + 355\cdot 521 + 142\cdot 521^{2} + 404\cdot 521^{3} + 191\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 299 + 190\cdot 521 + 288\cdot 521^{2} + 312\cdot 521^{3} + 264\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 374 + 294\cdot 521 + 268\cdot 521^{2} + 328\cdot 521^{3} + 271\cdot 521^{4} +O\left(521^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,2,3)$ $0$ $0$
$12$ $5$ $(1,2,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,3,4,5,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.