Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 32 + 187\cdot 211 + 11\cdot 211^{2} + 51\cdot 211^{3} + 57\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 85 + 169\cdot 211 + 72\cdot 211^{2} + 209\cdot 211^{3} + 24\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 134 + 30\cdot 211 + 87\cdot 211^{2} + 191\cdot 211^{3} + 33\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 173 + 34\cdot 211 + 39\cdot 211^{2} + 181\cdot 211^{3} + 94\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $6$ |
$2$ |
$(1,2)$ |
$-1$ |
| $8$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $6$ |
$4$ |
$(1,2,3,4)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.