Properties

Label 3.2e6_5e2_23.4t5.3
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 5^{2} \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$36800= 2^{6} \cdot 5^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 2 x^{2} - 2 x + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 32 + 187\cdot 211 + 11\cdot 211^{2} + 51\cdot 211^{3} + 57\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 85 + 169\cdot 211 + 72\cdot 211^{2} + 209\cdot 211^{3} + 24\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 134 + 30\cdot 211 + 87\cdot 211^{2} + 191\cdot 211^{3} + 33\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 173 + 34\cdot 211 + 39\cdot 211^{2} + 181\cdot 211^{3} + 94\cdot 211^{4} +O\left(211^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.