Properties

Label 3.2e6_5e2_13e2.4t4.1
Dimension 3
Group $A_4$
Conductor $ 2^{6} \cdot 5^{2} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$270400= 2^{6} \cdot 5^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 6 x^{2} + 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 8\cdot 83 + 26\cdot 83^{2} + 46\cdot 83^{3} + 4\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 35\cdot 83 + 31\cdot 83^{2} + 82\cdot 83^{3} + 56\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 50 + 28\cdot 83 + 40\cdot 83^{2} + 31\cdot 83^{3} + 59\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 71 + 10\cdot 83 + 68\cdot 83^{2} + 5\cdot 83^{3} + 45\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$4$ $3$ $(1,2,3)$ $0$
$4$ $3$ $(1,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.