Properties

Label 3.2e6_5e2_11e2.12t33.3
Dimension 3
Group $\PSL(2,5)$
Conductor $ 2^{6} \cdot 5^{2} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\PSL(2,5)$
Conductor:$193600= 2^{6} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 3 x^{4} + 4 x^{3} + 6 x^{2} - 8 x - 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 37 + \left(17 a + 42\right)\cdot 43 + \left(29 a + 11\right)\cdot 43^{2} + 16 a\cdot 43^{3} + \left(2 a + 1\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 2 + \left(10 a + 26\right)\cdot 43 + \left(34 a + 12\right)\cdot 43^{2} + \left(12 a + 4\right)\cdot 43^{3} + \left(2 a + 18\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 + 37\cdot 43 + 21\cdot 43^{2} + 24\cdot 43^{3} + 4\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 7 + \left(32 a + 31\right)\cdot 43 + \left(8 a + 36\right)\cdot 43^{2} + \left(30 a + 25\right)\cdot 43^{3} + \left(40 a + 7\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 a + 41 + \left(25 a + 12\right)\cdot 43 + \left(13 a + 24\right)\cdot 43^{2} + \left(26 a + 30\right)\cdot 43^{3} + \left(40 a + 29\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 + 21\cdot 43 + 21\cdot 43^{2} + 25\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,5)$
$(1,5,4)(2,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,4)(3,5)$ $-1$ $-1$
$20$ $3$ $(1,5,4)(2,6,3)$ $0$ $0$
$12$ $5$ $(2,6,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(2,3,5,6,4)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.