Properties

Label 3.2e6_5_73e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 5 \cdot 73^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1705280= 2^{6} \cdot 5 \cdot 73^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 5 x^{4} - 72 x^{3} - 278 x^{2} - 496 x - 304 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 52 a + 14 + \left(14 a + 49\right)\cdot 53 + \left(19 a + 8\right)\cdot 53^{2} + \left(30 a + 40\right)\cdot 53^{3} + \left(32 a + 33\right)\cdot 53^{4} + \left(2 a + 9\right)\cdot 53^{5} + \left(41 a + 37\right)\cdot 53^{6} + \left(48 a + 1\right)\cdot 53^{7} + \left(3 a + 13\right)\cdot 53^{8} + \left(27 a + 16\right)\cdot 53^{9} + \left(36 a + 36\right)\cdot 53^{10} + \left(8 a + 40\right)\cdot 53^{11} +O\left(53^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 17 + 22\cdot 53 + 27\cdot 53^{2} + 30\cdot 53^{3} + 14\cdot 53^{4} + 40\cdot 53^{5} + 14\cdot 53^{6} + 13\cdot 53^{7} + 28\cdot 53^{8} + 14\cdot 53^{9} + 15\cdot 53^{10} + 11\cdot 53^{11} +O\left(53^{ 12 }\right)$
$r_{ 3 }$ $=$ $ a + 10 + \left(38 a + 4\right)\cdot 53 + \left(33 a + 18\right)\cdot 53^{2} + \left(22 a + 36\right)\cdot 53^{3} + \left(20 a + 27\right)\cdot 53^{4} + \left(50 a + 40\right)\cdot 53^{5} + \left(11 a + 39\right)\cdot 53^{6} + \left(4 a + 49\right)\cdot 53^{7} + \left(49 a + 32\right)\cdot 53^{8} + \left(25 a + 14\right)\cdot 53^{9} + \left(16 a + 49\right)\cdot 53^{10} + \left(44 a + 38\right)\cdot 53^{11} +O\left(53^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 21 + 51\cdot 53 + 4\cdot 53^{2} + 37\cdot 53^{3} + 18\cdot 53^{4} + 45\cdot 53^{5} + 26\cdot 53^{6} + 42\cdot 53^{7} + 32\cdot 53^{8} + 6\cdot 53^{9} + 46\cdot 53^{10} + 30\cdot 53^{11} +O\left(53^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 24 + \left(50 a + 7\right)\cdot 53 + \left(45 a + 36\right)\cdot 53^{2} + \left(6 a + 16\right)\cdot 53^{3} + \left(43 a + 2\right)\cdot 53^{4} + \left(47 a + 17\right)\cdot 53^{5} + \left(5 a + 32\right)\cdot 53^{6} + \left(4 a + 20\right)\cdot 53^{7} + \left(16 a + 22\right)\cdot 53^{8} + \left(5 a + 24\right)\cdot 53^{9} + \left(50 a + 14\right)\cdot 53^{10} + \left(33 a + 2\right)\cdot 53^{11} +O\left(53^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 22 + \left(2 a + 24\right)\cdot 53 + \left(7 a + 10\right)\cdot 53^{2} + \left(46 a + 51\right)\cdot 53^{3} + \left(9 a + 8\right)\cdot 53^{4} + \left(5 a + 6\right)\cdot 53^{5} + \left(47 a + 8\right)\cdot 53^{6} + \left(48 a + 31\right)\cdot 53^{7} + \left(36 a + 29\right)\cdot 53^{8} + \left(47 a + 29\right)\cdot 53^{9} + \left(2 a + 50\right)\cdot 53^{10} + \left(19 a + 34\right)\cdot 53^{11} +O\left(53^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(5,6)$
$(1,2,3)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(1,5)(3,6)$ $-1$
$6$ $2$ $(1,2)(4,5)$ $1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $-1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(1,3,5,6)$ $1$
$6$ $4$ $(1,4,5,2)(3,6)$ $-1$
$8$ $6$ $(1,2,3,5,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.