Properties

Label 3.2e6_5_197.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 5 \cdot 197 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$63040= 2^{6} \cdot 5 \cdot 197 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 6 x^{2} + 6 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 95 + 181\cdot 337 + 212\cdot 337^{2} + 100\cdot 337^{3} + 141\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 126 + 172\cdot 337 + 238\cdot 337^{2} + 259\cdot 337^{3} + 16\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 133 + 21\cdot 337 + 230\cdot 337^{2} + 9\cdot 337^{3} + 47\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 322 + 298\cdot 337 + 329\cdot 337^{2} + 303\cdot 337^{3} + 131\cdot 337^{4} +O\left(337^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.