Properties

Label 3.2e6_5_13e2.6t6.1c1
Dimension 3
Group $A_4\times C_2$
Conductor $ 2^{6} \cdot 5 \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$54080= 2^{6} \cdot 5 \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - 7 x^{4} + 12 x^{2} - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 28\cdot 31 + 30\cdot 31^{2} + 29\cdot 31^{3} + 22\cdot 31^{4} + 10\cdot 31^{5} + 24\cdot 31^{6} + 6\cdot 31^{7} + 3\cdot 31^{8} + 2\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 9 + \left(14 a + 27\right)\cdot 31 + \left(20 a + 17\right)\cdot 31^{2} + \left(21 a + 19\right)\cdot 31^{3} + 25\cdot 31^{4} + \left(4 a + 11\right)\cdot 31^{5} + \left(3 a + 14\right)\cdot 31^{6} + \left(5 a + 27\right)\cdot 31^{7} + \left(20 a + 28\right)\cdot 31^{8} + \left(13 a + 11\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 20 + \left(23 a + 28\right)\cdot 31 + \left(30 a + 11\right)\cdot 31^{2} + \left(11 a + 3\right)\cdot 31^{3} + 21 a\cdot 31^{4} + \left(28 a + 13\right)\cdot 31^{5} + \left(26 a + 18\right)\cdot 31^{6} + 12 a\cdot 31^{7} + \left(25 a + 12\right)\cdot 31^{8} + \left(13 a + 14\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 15 + 2\cdot 31 + 31^{3} + 8\cdot 31^{4} + 20\cdot 31^{5} + 6\cdot 31^{6} + 24\cdot 31^{7} + 27\cdot 31^{8} + 28\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 22 + \left(16 a + 3\right)\cdot 31 + \left(10 a + 13\right)\cdot 31^{2} + \left(9 a + 11\right)\cdot 31^{3} + \left(30 a + 5\right)\cdot 31^{4} + \left(26 a + 19\right)\cdot 31^{5} + \left(27 a + 16\right)\cdot 31^{6} + \left(25 a + 3\right)\cdot 31^{7} + \left(10 a + 2\right)\cdot 31^{8} + \left(17 a + 19\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 11 + \left(7 a + 2\right)\cdot 31 + 19\cdot 31^{2} + \left(19 a + 27\right)\cdot 31^{3} + \left(9 a + 30\right)\cdot 31^{4} + \left(2 a + 17\right)\cdot 31^{5} + \left(4 a + 12\right)\cdot 31^{6} + \left(18 a + 30\right)\cdot 31^{7} + \left(5 a + 18\right)\cdot 31^{8} + \left(17 a + 16\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,4)$
$(3,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(2,5)$$-1$
$4$$3$$(1,2,3)(4,5,6)$$0$
$4$$3$$(1,3,2)(4,6,5)$$0$
$4$$6$$(1,5,6,4,2,3)$$0$
$4$$6$$(1,3,2,4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.