Properties

Label 3.2e6_59.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 59 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$3776= 2^{6} \cdot 59 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 163 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 128\cdot 163 + 26\cdot 163^{2} + 138\cdot 163^{3} + 60\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 104\cdot 163 + 25\cdot 163^{2} + 7\cdot 163^{3} + 45\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 48 + 53\cdot 163 + 147\cdot 163^{2} + 152\cdot 163^{3} + 40\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 91 + 40\cdot 163 + 126\cdot 163^{2} + 27\cdot 163^{3} + 16\cdot 163^{4} +O\left(163^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.