Properties

Label 3.2e6_53e2.6t8.4
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 53^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$179776= 2^{6} \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} - x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 5 + 9 a\cdot 31 + \left(25 a + 1\right)\cdot 31^{2} + \left(10 a + 26\right)\cdot 31^{3} + \left(30 a + 10\right)\cdot 31^{4} + \left(17 a + 22\right)\cdot 31^{5} + \left(19 a + 18\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 27 + 4\cdot 31 + 17\cdot 31^{2} + 15\cdot 31^{3} + 13\cdot 31^{4} + 22\cdot 31^{5} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 8 + 2\cdot 31 + 29\cdot 31^{2} + 13\cdot 31^{3} + 20\cdot 31^{4} + 12\cdot 31^{5} + 29\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 14 + \left(21 a + 30\right)\cdot 31 + \left(5 a + 10\right)\cdot 31^{2} + \left(20 a + 22\right)\cdot 31^{3} + 29\cdot 31^{4} + \left(13 a + 27\right)\cdot 31^{5} + \left(11 a + 8\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ a + 19 + \left(21 a + 22\right)\cdot 31 + 11 a\cdot 31^{2} + \left(20 a + 24\right)\cdot 31^{3} + \left(3 a + 15\right)\cdot 31^{4} + \left(3 a + 2\right)\cdot 31^{5} + \left(29 a + 21\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 30 a + 21 + \left(9 a + 1\right)\cdot 31 + \left(19 a + 3\right)\cdot 31^{2} + \left(10 a + 22\right)\cdot 31^{3} + \left(27 a + 2\right)\cdot 31^{4} + \left(27 a + 5\right)\cdot 31^{5} + \left(a + 14\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,6,2)(3,4,5)$
$(1,5,2)(3,4,6)$
$(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,4)(2,3)$ $-1$
$6$ $2$ $(2,5)(3,6)$ $-1$
$8$ $3$ $(1,6,2)(3,4,5)$ $0$
$6$ $4$ $(1,3,4,2)(5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.