Properties

Label 3.179776.6t8.d.a
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 53^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$179776= 2^{6} \cdot 53^{2} $
Artin number field: Splitting field of 4.2.848.1 defined by $f= x^{4} - x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.a.a
Projective image: $S_4$
Projective field: Galois closure of 4.2.848.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 2\cdot 67 + 28\cdot 67^{2} + 27\cdot 67^{3} + 65\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 16\cdot 67 + 27\cdot 67^{2} + 37\cdot 67^{3} + 33\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 58 + 57\cdot 67 + 49\cdot 67^{2} + 54\cdot 67^{3} + 10\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 61 + 57\cdot 67 + 28\cdot 67^{2} + 14\cdot 67^{3} + 24\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.