Properties

Label 3.2e6_3e5.6t6.2c1
Dimension 3
Group $A_4\times C_2$
Conductor $ 2^{6} \cdot 3^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$15552= 2^{6} \cdot 3^{5} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 18\cdot 19 + 7\cdot 19^{2} + 19^{3} + 8\cdot 19^{4} + 13\cdot 19^{5} + 12\cdot 19^{6} + 4\cdot 19^{7} + 3\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 11 + 14 a\cdot 19 + \left(5 a + 14\right)\cdot 19^{2} + \left(11 a + 6\right)\cdot 19^{3} + 10 a\cdot 19^{4} + \left(11 a + 9\right)\cdot 19^{5} + 5\cdot 19^{6} + \left(9 a + 5\right)\cdot 19^{7} + \left(7 a + 10\right)\cdot 19^{8} + \left(5 a + 10\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 2 + \left(3 a + 15\right)\cdot 19 + \left(10 a + 15\right)\cdot 19^{2} + \left(10 a + 18\right)\cdot 19^{3} + \left(18 a + 14\right)\cdot 19^{4} + \left(8 a + 4\right)\cdot 19^{5} + \left(a + 13\right)\cdot 19^{6} + \left(10 a + 14\right)\cdot 19^{7} + \left(9 a + 9\right)\cdot 19^{8} + \left(18 a + 14\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 17 + 11\cdot 19^{2} + 17\cdot 19^{3} + 10\cdot 19^{4} + 5\cdot 19^{5} + 6\cdot 19^{6} + 14\cdot 19^{7} + 18\cdot 19^{8} + 15\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 8 + \left(4 a + 18\right)\cdot 19 + \left(13 a + 4\right)\cdot 19^{2} + \left(7 a + 12\right)\cdot 19^{3} + \left(8 a + 18\right)\cdot 19^{4} + \left(7 a + 9\right)\cdot 19^{5} + \left(18 a + 13\right)\cdot 19^{6} + \left(9 a + 13\right)\cdot 19^{7} + \left(11 a + 8\right)\cdot 19^{8} + \left(13 a + 8\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 17 + \left(15 a + 3\right)\cdot 19 + \left(8 a + 3\right)\cdot 19^{2} + 8 a\cdot 19^{3} + 4\cdot 19^{4} + \left(10 a + 14\right)\cdot 19^{5} + \left(17 a + 5\right)\cdot 19^{6} + \left(8 a + 4\right)\cdot 19^{7} + \left(9 a + 9\right)\cdot 19^{8} + 4\cdot 19^{9} +O\left(19^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(2,5)$
$(3,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(2,5)$$-1$
$4$$3$$(1,2,3)(4,5,6)$$0$
$4$$3$$(1,3,2)(4,6,5)$$0$
$4$$6$$(1,5,6,4,2,3)$$0$
$4$$6$$(1,3,2,4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.