Properties

Label 3.2e6_3e5.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 2^{6} \cdot 3^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$15552= 2^{6} \cdot 3^{5} $
Artin number field: Splitting field of $f= x^{6} + 3 x^{4} - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 16\cdot 37 + 14\cdot 37^{2} + 14\cdot 37^{3} + 12\cdot 37^{4} + 30\cdot 37^{6} + 19\cdot 37^{7} + 32\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 32 + 32 a\cdot 37 + \left(30 a + 10\right)\cdot 37^{2} + 32\cdot 37^{3} + \left(11 a + 33\right)\cdot 37^{4} + 4\cdot 37^{5} + \left(21 a + 32\right)\cdot 37^{6} + \left(28 a + 8\right)\cdot 37^{7} + \left(25 a + 18\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 27 + \left(22 a + 13\right)\cdot 37 + \left(12 a + 4\right)\cdot 37^{2} + \left(28 a + 5\right)\cdot 37^{3} + \left(6 a + 19\right)\cdot 37^{4} + \left(23 a + 12\right)\cdot 37^{5} + \left(9 a + 29\right)\cdot 37^{6} + \left(21 a + 17\right)\cdot 37^{7} + \left(31 a + 21\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 29 + 20\cdot 37 + 22\cdot 37^{2} + 22\cdot 37^{3} + 24\cdot 37^{4} + 36\cdot 37^{5} + 6\cdot 37^{6} + 17\cdot 37^{7} + 4\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 5 + \left(4 a + 36\right)\cdot 37 + \left(6 a + 26\right)\cdot 37^{2} + \left(36 a + 4\right)\cdot 37^{3} + \left(25 a + 3\right)\cdot 37^{4} + \left(36 a + 32\right)\cdot 37^{5} + \left(15 a + 4\right)\cdot 37^{6} + \left(8 a + 28\right)\cdot 37^{7} + \left(11 a + 18\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 32 a + 10 + \left(14 a + 23\right)\cdot 37 + \left(24 a + 32\right)\cdot 37^{2} + \left(8 a + 31\right)\cdot 37^{3} + \left(30 a + 17\right)\cdot 37^{4} + \left(13 a + 24\right)\cdot 37^{5} + \left(27 a + 7\right)\cdot 37^{6} + \left(15 a + 19\right)\cdot 37^{7} + \left(5 a + 15\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(2,5)$
$(3,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(1,4)(3,6)$ $-1$
$4$ $3$ $(1,2,3)(4,5,6)$ $0$
$4$ $3$ $(1,3,2)(4,6,5)$ $0$
$4$ $6$ $(1,2,3,4,5,6)$ $0$
$4$ $6$ $(1,6,5,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.