Properties

Label 3.2e6_3e4_7e2.6t8.6
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 3^{4} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$254016= 2^{6} \cdot 3^{4} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 6 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 317 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 202 + 214\cdot 317 + 272\cdot 317^{2} + 209\cdot 317^{3} + 301\cdot 317^{4} +O\left(317^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 207 + 174\cdot 317 + 272\cdot 317^{2} + 61\cdot 317^{3} + 223\cdot 317^{4} +O\left(317^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 265 + 238\cdot 317 + 95\cdot 317^{2} + 153\cdot 317^{3} + 175\cdot 317^{4} +O\left(317^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 279 + 5\cdot 317 + 310\cdot 317^{2} + 208\cdot 317^{3} + 250\cdot 317^{4} +O\left(317^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.