Properties

Label 3.2e6_3e4_41e2.6t8.3c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 3^{4} \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$8714304= 2^{6} \cdot 3^{4} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{4} - 15 x^{2} - 82 x + 87 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 373 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 55 + 118\cdot 373 + 172\cdot 373^{2} + 133\cdot 373^{3} + 203\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 152 + 357\cdot 373 + 30\cdot 373^{2} + 337\cdot 373^{3} + 97\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 259 + 274\cdot 373 + 241\cdot 373^{2} + 101\cdot 373^{3} + 19\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 280 + 368\cdot 373 + 300\cdot 373^{2} + 173\cdot 373^{3} + 52\cdot 373^{4} +O\left(373^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.