Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 41\cdot 73 + 25\cdot 73^{2} + 18\cdot 73^{3} + 44\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 27 + 72\cdot 73 + 16\cdot 73^{2} + 9\cdot 73^{3} + 68\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 50 + 33\cdot 73 + 53\cdot 73^{2} + 26\cdot 73^{3} + 16\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 59 + 71\cdot 73 + 49\cdot 73^{2} + 18\cdot 73^{3} + 17\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $4$ | $3$ | $(1,2,3)$ | $0$ |
| $4$ | $3$ | $(1,3,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.