Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 57 a + 2 + \left(7 a + 55\right)\cdot 61 + \left(15 a + 26\right)\cdot 61^{2} + \left(3 a + 36\right)\cdot 61^{3} + \left(36 a + 44\right)\cdot 61^{4} + \left(26 a + 4\right)\cdot 61^{5} + \left(52 a + 48\right)\cdot 61^{6} + \left(57 a + 27\right)\cdot 61^{7} + \left(29 a + 44\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 18 + 43\cdot 61 + 27\cdot 61^{2} + 13\cdot 61^{3} + 24\cdot 61^{4} + 30\cdot 61^{5} + 55\cdot 61^{6} + 34\cdot 61^{7} + 41\cdot 61^{8} +O\left(61^{ 9 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 39 a + 11 + \left(22 a + 8\right)\cdot 61 + \left(49 a + 17\right)\cdot 61^{2} + \left(20 a + 14\right)\cdot 61^{3} + \left(12 a + 4\right)\cdot 61^{4} + \left(5 a + 34\right)\cdot 61^{5} + \left(39 a + 13\right)\cdot 61^{6} + \left(23 a + 38\right)\cdot 61^{7} + \left(60 a + 42\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 4 a + 59 + \left(53 a + 5\right)\cdot 61 + \left(45 a + 34\right)\cdot 61^{2} + \left(57 a + 24\right)\cdot 61^{3} + \left(24 a + 16\right)\cdot 61^{4} + \left(34 a + 56\right)\cdot 61^{5} + \left(8 a + 12\right)\cdot 61^{6} + \left(3 a + 33\right)\cdot 61^{7} + \left(31 a + 16\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 43 + 17\cdot 61 + 33\cdot 61^{2} + 47\cdot 61^{3} + 36\cdot 61^{4} + 30\cdot 61^{5} + 5\cdot 61^{6} + 26\cdot 61^{7} + 19\cdot 61^{8} +O\left(61^{ 9 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 22 a + 50 + \left(38 a + 52\right)\cdot 61 + \left(11 a + 43\right)\cdot 61^{2} + \left(40 a + 46\right)\cdot 61^{3} + \left(48 a + 56\right)\cdot 61^{4} + \left(55 a + 26\right)\cdot 61^{5} + \left(21 a + 47\right)\cdot 61^{6} + \left(37 a + 22\right)\cdot 61^{7} + 18\cdot 61^{8} +O\left(61^{ 9 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,3)(4,6)$ |
| $(3,6)$ |
| $(1,2,3)(4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-3$ |
| $3$ | $2$ | $(2,5)$ | $1$ |
| $3$ | $2$ | $(2,5)(3,6)$ | $-1$ |
| $6$ | $2$ | $(1,3)(4,6)$ | $-1$ |
| $6$ | $2$ | $(1,3)(2,5)(4,6)$ | $1$ |
| $8$ | $3$ | $(1,2,3)(4,5,6)$ | $0$ |
| $6$ | $4$ | $(2,6,5,3)$ | $-1$ |
| $6$ | $4$ | $(1,4)(2,6,5,3)$ | $1$ |
| $8$ | $6$ | $(1,2,6,4,5,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.