Properties

Label 3.2e6_3e3_7_11.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 3^{3} \cdot 7 \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$133056= 2^{6} \cdot 3^{3} \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 6 x^{2} + 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 197 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 50 + 196\cdot 197 + 181\cdot 197^{2} + 22\cdot 197^{3} + 56\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 54 + 157\cdot 197 + 196\cdot 197^{2} + 136\cdot 197^{3} + 7\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 126 + 90\cdot 197 + 25\cdot 197^{2} + 142\cdot 197^{3} + 79\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 166 + 146\cdot 197 + 186\cdot 197^{2} + 91\cdot 197^{3} + 53\cdot 197^{4} +O\left(197^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.