Properties

Label 3.2e6_3e3_53e2.6t11.4
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 3^{3} \cdot 53^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$4853952= 2^{6} \cdot 3^{3} \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 5 x^{4} + 15 x^{2} - 3 x + 15 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 35\cdot 43 + 7\cdot 43^{2} + 4\cdot 43^{3} + 42\cdot 43^{4} + 37\cdot 43^{5} + 8\cdot 43^{6} + 9\cdot 43^{7} + 30\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 40 a + 28 + \left(29 a + 13\right)\cdot 43 + \left(a + 11\right)\cdot 43^{2} + \left(42 a + 24\right)\cdot 43^{3} + \left(5 a + 25\right)\cdot 43^{4} + \left(37 a + 33\right)\cdot 43^{5} + 32 a\cdot 43^{6} + \left(20 a + 31\right)\cdot 43^{7} + \left(5 a + 6\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 36 + 32\cdot 43 + 33\cdot 43^{2} + 15\cdot 43^{3} + 35\cdot 43^{4} + 15\cdot 43^{5} + 18\cdot 43^{6} + 23\cdot 43^{7} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 36 + \left(4 a + 2\right)\cdot 43 + \left(40 a + 7\right)\cdot 43^{2} + \left(17 a + 21\right)\cdot 43^{3} + \left(30 a + 33\right)\cdot 43^{4} + \left(8 a + 20\right)\cdot 43^{5} + \left(11 a + 29\right)\cdot 43^{6} + \left(41 a + 29\right)\cdot 43^{7} + \left(22 a + 37\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 25 + \left(13 a + 3\right)\cdot 43 + \left(41 a + 26\right)\cdot 43^{2} + 21\cdot 43^{3} + \left(37 a + 32\right)\cdot 43^{4} + \left(5 a + 21\right)\cdot 43^{5} + \left(10 a + 39\right)\cdot 43^{6} + \left(22 a + 18\right)\cdot 43^{7} + \left(37 a + 34\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 34 a + 2 + \left(38 a + 41\right)\cdot 43 + \left(2 a + 42\right)\cdot 43^{2} + \left(25 a + 41\right)\cdot 43^{3} + \left(12 a + 2\right)\cdot 43^{4} + \left(34 a + 42\right)\cdot 43^{5} + \left(31 a + 31\right)\cdot 43^{6} + \left(a + 16\right)\cdot 43^{7} + \left(20 a + 19\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,5)$
$(1,2,4)(3,6,5)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-3$
$3$ $2$ $(1,3)(4,5)$ $-1$
$3$ $2$ $(4,5)$ $1$
$6$ $2$ $(1,4)(3,5)$ $-1$
$6$ $2$ $(1,3)(2,4)(5,6)$ $1$
$8$ $3$ $(1,2,4)(3,6,5)$ $0$
$6$ $4$ $(1,5,3,4)$ $-1$
$6$ $4$ $(1,3)(2,4,6,5)$ $1$
$8$ $6$ $(1,2,4,3,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.