Properties

Label 3.2e6_3e3_23.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 3^{3} \cdot 23 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$39744= 2^{6} \cdot 3^{3} \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - 9 x^{4} + 72 x^{2} - 621 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.3_23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 32 + 16\cdot 53 + 17\cdot 53^{2} + 15\cdot 53^{3} + 33\cdot 53^{4} + 39\cdot 53^{5} + 39\cdot 53^{6} + 37\cdot 53^{7} + 36\cdot 53^{8} + 5\cdot 53^{9} + 17\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 39 a + 19 + \left(48 a + 2\right)\cdot 53 + \left(51 a + 2\right)\cdot 53^{2} + \left(12 a + 10\right)\cdot 53^{3} + \left(30 a + 45\right)\cdot 53^{4} + \left(51 a + 8\right)\cdot 53^{5} + \left(31 a + 35\right)\cdot 53^{6} + \left(26 a + 51\right)\cdot 53^{7} + \left(44 a + 52\right)\cdot 53^{8} + \left(48 a + 4\right)\cdot 53^{9} + \left(6 a + 17\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 39 a + 37 + 48 a\cdot 53 + \left(51 a + 51\right)\cdot 53^{2} + \left(12 a + 42\right)\cdot 53^{3} + \left(30 a + 5\right)\cdot 53^{4} + \left(51 a + 27\right)\cdot 53^{5} + \left(31 a + 47\right)\cdot 53^{6} + \left(26 a + 32\right)\cdot 53^{7} + \left(44 a + 7\right)\cdot 53^{8} + \left(48 a + 3\right)\cdot 53^{9} + \left(6 a + 4\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 21 + 36\cdot 53 + 35\cdot 53^{2} + 37\cdot 53^{3} + 19\cdot 53^{4} + 13\cdot 53^{5} + 13\cdot 53^{6} + 15\cdot 53^{7} + 16\cdot 53^{8} + 47\cdot 53^{9} + 35\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 34 + \left(4 a + 50\right)\cdot 53 + \left(a + 50\right)\cdot 53^{2} + \left(40 a + 42\right)\cdot 53^{3} + \left(22 a + 7\right)\cdot 53^{4} + \left(a + 44\right)\cdot 53^{5} + \left(21 a + 17\right)\cdot 53^{6} + \left(26 a + 1\right)\cdot 53^{7} + 8 a\cdot 53^{8} + \left(4 a + 48\right)\cdot 53^{9} + \left(46 a + 35\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 16 + \left(4 a + 52\right)\cdot 53 + \left(a + 1\right)\cdot 53^{2} + \left(40 a + 10\right)\cdot 53^{3} + \left(22 a + 47\right)\cdot 53^{4} + \left(a + 25\right)\cdot 53^{5} + \left(21 a + 5\right)\cdot 53^{6} + \left(26 a + 20\right)\cdot 53^{7} + \left(8 a + 45\right)\cdot 53^{8} + \left(4 a + 49\right)\cdot 53^{9} + \left(46 a + 48\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(3,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(1,2)(4,5)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,2,3)(4,5,6)$$0$
$6$$4$$(1,3,4,6)$$-1$
$6$$4$$(1,5,4,2)(3,6)$$1$
$8$$6$$(1,2,3,4,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.