Properties

Label 3.2e6_3e2_97e2.12t33.1
Dimension 3
Group $A_5$
Conductor $ 2^{6} \cdot 3^{2} \cdot 97^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$5419584= 2^{6} \cdot 3^{2} \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{3} - 30 x^{2} - 37 x - 38 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 17 + \left(9 a + 22\right)\cdot 41 + \left(17 a + 34\right)\cdot 41^{2} + \left(40 a + 37\right)\cdot 41^{3} + \left(23 a + 2\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 36 + \left(7 a + 18\right)\cdot 41 + \left(5 a + 21\right)\cdot 41^{2} + \left(27 a + 22\right)\cdot 41^{3} + \left(36 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 27 + \left(31 a + 33\right)\cdot 41 + \left(23 a + 35\right)\cdot 41^{2} + 18\cdot 41^{3} + \left(17 a + 34\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 2\cdot 41^{2} + 27\cdot 41^{3} + 32\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 21 + \left(33 a + 6\right)\cdot 41 + \left(35 a + 29\right)\cdot 41^{2} + \left(13 a + 16\right)\cdot 41^{3} + \left(4 a + 6\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,2,3)$ $0$ $0$
$12$ $5$ $(1,2,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,3,4,5,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.