Properties

Label 3.2e6_3e2_5e2_7.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$100800= 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Artin number field: Splitting field of $f= x^{4} - 4 x^{2} - 24 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 74\cdot 191 + 23\cdot 191^{2} + 29\cdot 191^{3} + 100\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 71\cdot 191 + 13\cdot 191^{2} + 145\cdot 191^{3} + 111\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 98\cdot 191 + 184\cdot 191^{2} + 11\cdot 191^{3} + 182\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 108 + 138\cdot 191 + 160\cdot 191^{2} + 4\cdot 191^{3} + 179\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.