Properties

Label 3.2e6_3e2_5e2_11e2.6t8.6
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1742400= 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{4} - 6 x^{2} - 12 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 15 + \left(28 a + 5\right)\cdot 29 + \left(24 a + 15\right)\cdot 29^{2} + \left(27 a + 15\right)\cdot 29^{3} + \left(9 a + 22\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 4 + \left(27 a + 1\right)\cdot 29 + 14 a\cdot 29^{2} + \left(20 a + 14\right)\cdot 29^{3} + \left(16 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 26 + 22\cdot 29 + \left(4 a + 24\right)\cdot 29^{2} + \left(a + 13\right)\cdot 29^{3} + \left(19 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 13 + \left(a + 28\right)\cdot 29 + \left(14 a + 17\right)\cdot 29^{2} + \left(8 a + 14\right)\cdot 29^{3} + \left(12 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.