Properties

Label 3.2e6_3e2_29e2.6t8.5c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 3^{2} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$484416= 2^{6} \cdot 3^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 2 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 50 + 32\cdot 151 + 47\cdot 151^{2} + 149\cdot 151^{3} + 11\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 129 + 23\cdot 151 + 117\cdot 151^{2} + 121\cdot 151^{3} + 41\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 136 + 84\cdot 151 + 135\cdot 151^{2} + 68\cdot 151^{3} + 2\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 140 + 9\cdot 151 + 2\cdot 151^{2} + 113\cdot 151^{3} + 94\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.